
REPORT OCUMENTATION PAGE1 ;:
RI~STD~nlY I :;Ad

=momwnw %Nov8 20imi

Experimentation in Software Engineering. F4RF960

0 ~ AMINO"9620

Victor R. Basili, Richard W. Selly, andAES..90 93
David H. Hutchens AO

7PWFQMA QRANaI"TiON NAMA6) AUG A20UUIS) L PtNIAQX Aj~j=3NoC'i Department of Computer Science 1PS UN
University of Maryland o c #7

College Park, MD 20742 ~M f-

9. 3P#LQ w1X1OA1G AGIXC? iMA) AMQ ADOQAU15I) 11. IPQNSOIBjrM~mWm"

AFOSR
Bid 410
Boiling AFB DC 20332-6448

11. Sw"ULIMTAT IOTIS

lr.a& mris ASMUMAvAMAM.T STAr(MTV T f QaRMW ra

ApprOee f: - , bll.C relea 56

distrib xIA~ S ELECt.

Research supported in part by the Air Force Office of Scientific
Research Contract AFOSR-F4962O-8OCEOO1 and the National Aeronautics and

Space Administration Grant NSG-5123 to the University of Maryland. Com-

puter support provided by the Computer Science Center at the University of
Maryland.

!' 66 I .AMS UiL AM Of PAG&

17 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I MMr~~AhWc& CM .samy .swao

$Al
1 1 SCUaT CAU,~JK~ 19.,~J SEWN 4aLsikim TW 1t ScmO LS0"ln,%NS MG

OF? 5I*)6840 SU"ehU OFm a4 tIUA ~AC
at S S-e

TR-1575 Nov. 20, 1985

EXPERIMENTATION
IN

SOFTWARE ENGINEERING

Victor R. Basili,
Richard W. Selby, Jr.,
.David H. Hutchens

-';- .______ F - ----- i .--- " ' -" " -;". - - t

cr; , "- . L

fC(TA72U [; T/t [- - "L - :''~ i c "';R 9-
SU..,, .r ,o, ed":,. ~ ,,.T - ;

By

Oi:;tr ibitro: I

Avalt. ,1v C-des

vi I wc:;, 'I:, "orDist ;'(rCw

Research supported in part by the Air Force Office of Scientific
Research Contract AFOSR-F49620-80C-2001 and the National Aeronautics and
Space Administration Grant NSG-5123 to the University of Maryland. Com-
puter support provided by the Computer Science Center at the University of
Maryland.

Approved for pu!-lic
distribution unli,,7kd

Experimentation in Software Engineering

Victor R. Basill 1, Richard W. Selby, Jr. 2,

and David H. Hutchens 3

I Department of Computer Science. University of Maryland. College Park. .D 20742

(301) 454-2002

2 Department of Information and Computer Science, University of California, Irvine, CA

92717 (714) 858-7403; was with the Department of Computer Science, University
of Maryland, College Park, MD 20742

3 Department of Computer Science, Clemson University, Clemson, SC 29631 (803) 054-
4484

KEYWORDS:
software technology measurement and evaluation, data collection and analysis, soft-
ware metrIcs, controlled experiment, experimental design, empirical study

Rebearch supported in pan by the Air Force Odie of Sclenutfic Research Contract AFOSR-F4920-0-C-Ot and the National
AetonUlSUcs and Space Administtion Grant NSGO6123 to the University or Maryland. Computer support provided In part by the
Computer Science Center at the University of Miryland.

ABSTRACT

Experimentation In software engineering supports the advancement of the field

through an Iterative learning process. In this paper we present a framework for analyz-

Ing most of the experimental work performed In software engineering over the past

several years. We describe a variety of experiments In the framework and dlseiss their

contribution to the software engineering discipline. Some useful recommendations for

the application of the experimental process In software engineering are Included.

" ? "C

Table of Contents

1 Introduction ... 1

2 Objectives .. 1

3 Experimentation Framework .. 2
3.1 Experiment Definition .. 2

3.2 Experiment Planning ... 4

3.3 Experiment Operation ... 5

3.4 Experiment Interpretation ... 6
4 Classification of Analyses .. 6

4.1 Blocked SubJect-Project Studies .. 7

4.2 Replicated Project Studies ... 11

4.3 M ulti-Project Variation Studies .. 18

4.4 Single Project Studies .. 19

5 Problem Areas In Experimentation ... 22

5.1 Experimentation Overall ... 23

5.2 Experiment Definition ... 23

5.3 Experiment Planning ... 23

5.4 Experiment Operation .. 24

5.5 Experiment Interpretation ... 24

8 Conclusion .. 25

7 References .. 26

1. Introduction

As any area matures, there Is the need to understand its components and their rela-

tionships. An experimental process provides a basis for the needed advancement In

knowledge and understanding. Since software engineering Is In Its adolescence, It Is cer-

tainly a candidate for the experimental method of analysis. Experimentation is per-

formed In order to help us better evaluate, predict, understand, control, and improve

the software development process and product.

Experimentation In software engineering, as with any other experimental procedure,

Involves an Iteration of a hypothesize and test process. Models of the software process

or product are built, hypotheses about these models are tested, and the Information

learned Is used to refine the old hypotheses or develop new ones. In an area like soft-

ware engineering, this approach takes on special Importance because we greatly need to

Improve our knowledge of how software Is developed, the effect of various technologies,

and what areas most need Improvement. There Is a great deal to be learned and Intui-

tion Is not always the best teacher.

In this paper we lay out a framework for analyzing most of the experimental work

that has been performed In software engineering over the past several years. We then

discuss a variety of these experiments, their results, and the Impact they have had on

our knowledge of the software engineering discipline.

2. Objectives

There are three overall goals for this work. The first objective Is to describe a

framework for experimentation In software engineering. The framework for experlmen-

1L

tation Is Intended to help structure the experimental process and to provide a

classificatlon scheme for understanding and evaluating experimental studies. The

second objective Is to classify and discuss a variety of experiments from the literature

according to the framework. The description of several software engineering studies Is

Intended to provide an overview of the knowledge resulting from experimental work, a

summary of current research directions, and a basis for learning from past experience

with experimentation. The third objective Is to Identify problem areas and lessons

learned In experimentation In software engineering. The presentation of problem areas

and lessons learned Is Intended to focus attention on general trends In the field and to

provide the experimenter with useful recommendations for performing future studies.

The following three sections address these goals.

3. Experimentation Framework

The framework of experimentation, summarized in Figure 1, consists of four

categories corresponding to phases of the experimentation process: I) definition, II) plan-

ning, I) operation, and rV) Interpretation. The following sections discuss each of these

four phases.

3.1. Experiment Definition

The fir phase of the experimental process is the study definition phase. The

study definition phase contains six parts: A) motivation, B) object, C) purpose, D) per-

spective, E) domain, and F) scope. Most study definitions contain each of the six parts;

an example definition appears In Figure 2.

2

There can be several motivations, objects, purposes, or perspectives In an exper-

mental study. For example, the motivation of a study may be to understand, assess, or

Improve the effect of a certain technology. The "object of study" Is the primary entity

examined in a study. A study may examine the final software product, a development

process (e.g., inspection process, change process), a model (e.g., software reliability

model), etc. The purpose of a study may be to characterize the change In a system over

time, to evaluate the effectiveness of testing processes, to predict system development

cost by using a cost model, to mctlvatel the validity of a theory by analyzing empirical

evidence, etc. In experimental studies that examine "software quality," the Interpreta-

tion usually Includes correctness If It is from the perspective of a developer or reliability

If It Is from the perspective of a customer. Studies that examine metrics for a given pro-

ject type from the perspective of the project manager may Interest certain project

managers, while corporate managers may only be Interested If the metrics apply across

several project types.

Two Important domains that are considered In experimental studies of software are

1) the Individual programmers or programming teams (the "teams") and 11) the programs

or projects (the "projects"). "Teams" are (possibly slngle-person) groups that work

separately, and "projects" are separate programs or problems on which teams work.

Teams may be characterized by experience, size, organization, etc., and projects may be

characterized by size, complexity, application, etc. A general classification of the scopes

I For clarification, the usage of the word "motivate" as a study purpose Is distinct
from the study "motivation."

3

of experimental studies can be obtained by examining the sizes of these two domains

considered (see Figure 3). Blocked subject-project studies examine one or more objects

across a set of teams and a set of projects. Replicated project studies examine object(s)

across a set of teams and a single project, while multl-project variation studies examine

object(s) across a single team and a set of projects. Single project studies examine

object(s) on a single team and a single project. As the representativeness of the samples

examined and the scope of examination Increase, the wlder-reaching a study's conclu-

sions become.

3.2. Experiment Planning

The second phase of the experimental process Is the study planning phase. The fol-

lowing sections discuss aspects of the experiment planning phase: A) design, B) criteria,

and C) measurement.

The design of an experiment couples the study scope with analytical methods and

Indicates the domain samples to be examined. Fractional factorial or randomized block

designs usually apply In blocked subject-project studies, while completety randoilIzed or

Incomplete block designs usually apply In multi-project and replicated project studies

(33, 40]. MultIvarlate analysis methods, Including correlation, factor analysis, and re-

gression (75,80, 801, generally may be used across all experimental scopes. Statistical

models may be formulated and customized as appropriate [891. Non-parametric

methods should be planned when only limited data may be available or distributional

assumptions may not be met fog]. Sampling techniques f411 may be used to select

representative programmers and programs/projects to examine.

4

Different motivations, objects, purposes, perspectives, domains, and scopes require

the examination of different criteria. Criteria that tend to be direct reflections of

cost/quallty Include cost [111, 106, 88, 4, 28], errors/changes [49, 14, 109, 2, 81, 19], reli-

ability, (42, 84, 58, 70, 89, 78, 77, 951, and correctness (51 a1, 881. Criteria that tend to

be Indirect reflections of cost/quallty Include data coupling (62, 48, 102, 781, Information

visibility [85, 83, 55], programmer understanding [98, 100, 107, 110], execution coverage

[103, 21, 24], and size/complexity [17, 59, 71].

The concrete manifestations of the cost/quallty aspects examined In the experiment

are captured through measurement. Paradigms assist In the metric definition process:

the goal-questlon-metric paradigm [20, 22, 25, 93] and the factor-criteria-metric para-

digm (3g, 72j. Once appropriate metrics have been defined, they may be validated to

show that they capture what is intended [12, 18, 44, 50, 108, 113]. The data collection

process Includes developing automated collection schemes [15] and designing and testing

data collection forms [22, 101. The required data may Include both objective and sub-

jective data and differents levels of measurement: nominal (or classificatory), ordinal (or

ranking), Interval, or ratio (go].

3.3. Experiment Operation

The third phase of the experimental process Is the study operation phase. The

operation of the experiment consists of A) preparation, B) execution, and C) analysis.

Before conducting the actual experiment, preparation may Include a pilot study to

confirm the experimental scenario, help organize experimental factors (e.g., subject ex-

pertise), or Inoculate the subjects [44, 43, 83, 24, 110, 731. Experimenters collect and

5

validate the defined data during the execution of the study [18, 109]. The analysis of

the data may Include a combination of quantitative and qualitative methods [30]. The

preliminary screening of the data, probably using plots and histograms, usually proceeds

the formal data analysis. The process of analyzing the data requires the Investigation of

any underlying assumptions (e.g., distributional) before the application of the statistical

models and tests.

3.4. Experiment Interpretation

The fourth phase of the experimental process Is the study Interpretation phase.

The Interpretation of the experiment consists of A) interpretation context, B) extrapola-

tion, and C) Impact. The results of the data analysis from a study are Interpreted In a

broadening series of contexts. These contexts of interpretation are the statistical rrame-

work In which the result Is derived, the purpose of the particular study, and the

knowledge In the field of research [15]. The representativeness of the sampling analyzed

In a study qualifies the extrapolation of the results to other environments [20]. Several

follow-up activities contribute to the Impact of a study: presentlng/publlshing the

results for feedback, replicating the experiment [33, 40], and actually applying the

results by modifying methods for software development, maintenance, management, and

research.

4. Classification of Analyses

Several Investigators have published studies In the four general scopes of examina-

tlon: blocked subject-project, replicated project, multl-project variation, or single pro-

Ject. The following sections cite studies from each of these categories. Note that sur-

e

veys on experimental methodology In empirical studies Include [35, 96, 74]. Each of the

sections first discusses one experiment In moderate depth, using Italicized keywords from

the framework for experimentation, and then chronologically presents an overview of

several others In the category.

4.1. Blocked Subject-Project Studies

Wtth a motivation to Improve and better understand unit testing, [24] conducted a

study whose purpose was to characterize and evaluate the processes (i.e., objects) of code

reading, functional testing, and structural testing from the perspective of the developer.

The testing processes were examined In a blocked subject-project scope, where 74 stu-

dent through professional programmers (from the programmer domain) tested four unit-

size programs (from the program domain) In a replicated fractional factorial design. Ob-

jective measurement of the testing processes was in several criteria areas: fault detection

effectiveness, fault detection cost, and classes of faults detected. Experiment prepara-

tion Included a pilot study [83], execution Incorporated both manual and automated

monitoring of testing activity, and analysts used analysis of variance methods [33, 901.

The major results (in the interpretation context of the study purpose) Included 1) with

the professionals, code reading detected more software faults and had a higher fault

detection rate than did the other.methods; 2) with the professionals, functional testing

detected more faults than did structural testing, but they were not different In fault

detection rate; 3) with the students, the three techniques were not different In perfor-

mance, except that structural testing detected fewer faults than did the others In one

study phase; and 4) overall, code reading detected more interface faults and functional

7

testing detected more control faults than did the other methods. A major result (In the

interpretation context of the field of research) Is that the study suggests that non-

execution based fault detection, as In code reading, Is at least as effective as on-line

methods. The particular programmers and programs sampled qualify the extrapolation

of the results. The impact of the study Is an advancement in the understanding of

effective software testing methods.

In order to understand program debugging, [57] evaluated several related factors,

Including effect of debugging aids, effect of fault type, and effect of particular program

debugged from the perspective of the developer and maintainer. Thirty experienced

programmers Independently debugged one of four one-page programs that contained a

single fault from one of three classes. The major results of these studies were 1) debug-

ging is much faster If the programmer has had previous experience with the program, 2)

assignment bugs were harder to find than other lnds, and 3) debugging alds did not

seem to help programmers debug faster. Consistent results were obtained when the

study was conducted on ten additional experienced programmers [58]. These results and

the identification of possible "principles" of debugging contribute to the understandIng

of debugging methodology.

In order to Improve experimental methodology and Its application, [110] evaluated

programmers' ability to understand and modify a program from the perspective of the

developer and modifier. Various measures of programmer understanding were calculat-

ed, In a series of factorlal design experiments, on groups of 18 - 48 university students

performing tasks on two small programs. The study emphasized the need for well-

structured and well-documented programs, and provided valuable testimony on and

8

worked toward a suitable experimentation methodology.

In order to assess the Impact of language features on the programming process, t531

characterized the relationship of language features to software reliability from the per-

spective of the developer. Based on an analysis of the deficiencies In a programming

language, nine different features were modified to produce a new version. Fifty-one ad-

vanced students were divided Into two groups and asked to complete Implementations of

two small but sophisticated programs (75-200 line) In the original language and Its

modified version. The redesigned features In the two languages were contrasted In pro-

gram fault frequency, type, and persistence. The experiment Identified several

language-design decisions that significantly affected reliability, which contributes to the

understanding of language design for reliable software.

In order to understand the unit testing process better, [60] evaluated a reading

technique and functional and "selective- testing (a composite approach) from the per-

spective of the developer. Thirty-nine university students applied the techniques to

three unlt-size programs In a Latin square design. Functional and "selective" testing

were equally effective and both superior to the reading technique, which contributed to

our understanding of testing methodology.

In order to Improve and better understand the maintenance process, [43] conducted

two experiments to evaluate factors that Influence two aspects of software maintenance,

program understanding and modification, from the perspective of the developer and

maintalner. Thirty-six junior through advanced professional programmers In each ex-

periment examined three classes of small (38 - 57 source line) programs In a factorial

design. The factors examined Include control flow complexity, variable name mnemonl-

9

city, type of modlfication, degree of commenting, and the relationship of programmer

performance to various complexity metrics. In (44[they continued the Investigation of

how software characteristics relate to psychological complexity, and presented a third

experiment to evaluate the ability of 54 professional programmers to detect program

bugs In three programs In a factorial design. The series of experiments showed that

software science [59] and cyclomatic complexity [71] measures are related to the

difilculty experienced by programmers In locating errors In code.

In order to Improve and better understand program debugging, (1081 evaluated the

theory that "programmers use 'slicing' (stripping away a program's statements that do

not Influence a given variable at a given statement) when debugging" from the perspec-

tive of the developer, maintainer, and researcher. Twenty-one university graduate stu-

dents and programming staff debugged a fault In three unlt-size (75 - 150 source line)

programs In a non-parametric design. The study results supported the slicing theory,

that Is, programmers during debugging routinely partitioned programs Into a coherent,

dlscontiguous piece (or slice). The results advance the understanding of software debug-

ging methodology.

In order to Improve design techniques, [87] evaluated flowcharts and program

design languages (PDL) from the plerspectIve of the developer. Twenty-two graduate

students designed two small (approximately 1000 source line) projects, one using

flowcharts and the other using PDL. Overall, the results suggested that design perfor-

mance and designer-programmer communication were better for projects using PDL.

10

In order to validate a theory of programming knowledge, [101] conducted two stu-

dies, using 139 novices and 41 professional programmers, to evaluate programmer

behavior from the perspective of the researcher. The theory was that programming

knowledge contained programming plans (generic program fragments representing com-

mon actions sequences) and rules of programming discourse (conventions used In com-

posing plans Into programs). The results support the existence and use of such plans

and rules by both novice and advanced programmers.

Other blocked subject-project studies include [82, 112).

4.2. Replicated Project Studies

With a motivation to assess and better understand team software development

methodologies, [151 conducted a study whose purpose was to characterize and evaluate

the development processes (i.e., objects) of a a) disclplined-methodology team approach,

b) ad hoc team approach, and c) ad hoc Individual approach from the perspective of the

developer and project manager. The development processes were examined In a repli-

cated project scope, In which advanced university students comprising seven three-

person teams, six three-person teams, and six Individuals (from the programmer domain)

used the approaches, respectively. They separately developed a small (800 - 2200 line)

compiler (from the program domain) in a non-prametric design. Objective measure-

ment of the development approaches was In several criteria areas: number of changes,

number of program runs, program data usage, program data couplIng/binding, static

program size/complexity metrics, language usage, and modularity. Experiment prepara-

tion Included presentation of relevant material [08, 7, 341, execution Included automated

II

monitoring of on-line development activity and analysis used non-parametric comparison

methods. The major results (In the interpretation context of the study purpose) Includ-

ed 1) the methodological discipline was a key Influence on the general efficlency of the

software development process; 2) the disciplined team methodology significantly reduced

the costs of software development as reflected In program runs and changes; and 3) the

examination of the effect of the development approaches was accomplished by the use of

quantitative, objective, unobtrusive, and automatable process and product metrics. A

major resurt (In the interpretation context of the field of research) Is that the study sup-

ports the belief that Incorporating discipline In software development reflects positively

on both the development process and final product. The particular programmers and

program sampled qualify the extrapolation of the results. The impact of the study Is an

advancement In the understanding of software development methodologies and their

evaluation.

In order to improve the design and Implementation processes, [84] evaluated system

modularity from the perspective of the developer. Twenty university undergraduates

each developed one of four different types of Implementations for one of five different

small modules. Then each of the modules were combined with others to form several

versions of the whole system. The major results suggested that minor effort was re-

quired In asembllng the systems fnd that major system changes can be confined to

small, well-defined subsystems. The results support the Ideas on formal specifications

and modularity discussed In [83, 851 and advance the understanding of design methodol-

ogy.

12

In order to assess the Impact of static typing of programming languages In the de-

velopment process, (54] evaluated the use of a statically typed language (having Integers

and strings) and a "typeless" language (e.g., arbitrary subscripting of memory) from the

perspective of the developer. Thirty-eight students programmed a small (48 - 297

source line) problem In both languages, with half doing It In each order. The two

languages were compared In the resulting program faults, the number of runs containing

faults, and the relation of subject experience to fault proneness. The major result was

that the use of a statically typed language can Increase programming reliability, which

assists In the design and use of programming languages.

In order to Improve program composition, comprehension, debugging, and

modlflcatlon, [98] evaluated the use of detailed flowcharts In these tasks from the per-

spective of the developer, maintainer, modifier, and researcher. Groups of 53 - 70 no-

vice through Intermediate subjects, In a series of five experiments, performed various

tasks using small programs. No significant differences were found between groups that

used and those that did not use flowcharts, questioning the merit of using detailed

flowcharts.

In order to improve and better understand the unit testing process, (79] evaluated

the techniques of three-person walk-throughs, functional testing, and a control group

from the perspective of the developer. Fifty-nine junior through advanced professional

programmers applied the techniques to test a small (100 source line) but nontrivial pro-

gram. The techniques were not different In the number of faults they detected, all pair-

Ings of techniques were superior to single techniques, and code reviews were less cost-

effective than the others. These results assist In the selection of appropriate software

13

testing techniques.

In order to validate a particular metric family, (171 evaluated the ability of a pro-

posed metric family to explain differences In system development methodologies and sys-

tem changes from the perspective of the developer, project manager, and researcher.

The metrics were applied to 19 versions of a small (600 - 2200) compiler, which were

developed by teams of advanced university students using three different development

approaches (see the first study (151 described in this section). The major results Includ-

ed 1) the metrics were able to differentiate among projects developed with different de-

velopment methodologies; and 2) the differences among Individuals had a large effect on

the relationships between the metrics and aspects of system development. These results

suggest Insights Into the formulation and appropriate use of software metrics.

In order to Improve the understanding of why software errors occur, [651 character-

Ized programmer misconceptions, cognitive strategies, and their manifestations as bugs

In programs from the perspective of the developer and researcher. Two-hundred-four

novice programmers separately attempted implementations of an elementary program.

The results supported the programmers' Intended use of **programming plans" [100 and

revealed that most people preferred a read-process strategy over a process-read strategy.

The results advance the understanding of how Individuals write programs, why they

sometimes make errors, and what p0ogrammlng language constructs should be available.

In order to understand the effect of coding conventions on program comprehenslbil-

ty, (73) conducted a study to evaluate the relationship between Indentation levels and

program comprehension from the perspective of the developer. Elghty-six novlce

through professional subjects answered questions about one of seven program varlatlons

14

with different level and type of indentation. The major result was that an Indentation

level of two or four spaces was preferred over zero or six.

In order to Improve software development approaches, (291 characterized and

evaluated the prototyping and specifying development approaches from the perspective

of the developer, project manager, and user. Seven two- and three-person teams, con-

sisting of university graduate students, developed versions of the same application soft-

ware system (2000 - 4000 line); four teams used a requirement/design specifying ap-

proach and three teams used a prototyping approach. The systems developed by proto-

typing were smaller, required less development effort, and were easier to use. The sys-

tems developed by specifying had more coherent designs, more complete functionality,

and software that was easier to Integrate. These results contribute to the understanding

of the merits and appropriateness of software development approaches.

In order to validate the theoretical model for N-version programming (881, (87, 3]

conducted a study to evaluate the effectiveness of N-version programming for reliability

from the perspective of the customer and user. N-version programming uses a high-level

driver to connect several separately designed versions of the same system, the systems

"vote" on the correct solution, and the solution provided by the majority of the systems

is output. Twenty-seven graduate students were asked to independently design an 800

source line system. The factors examined Included Individual system reliability, total

N-verslon system reliability, and classes of faults that occurred In systems simultaneous-

ly. The major result was that the assumption of Independence of the faults In programs

Is not Justified, and therefore, the reliability of the combined "voting" system may not

be as high as given by the model.

15

In order to Improve and better understand software development approaches. [94]

characterized and evaluated the Cleanroom development approach [47, 46], in which

software Is developed without execution (i.e., completely off-line), from the perspective

of the developer, project manager, and customer. Fifteen three-person teams of ad-

vanced unIversity students separately developed a small system (300 - 2300 source line);

ten teams used Cleanroom and five teams used a traditional development approach In a

non-parametric design. The major results Included 1) most developers using the Clean-

room approach were able to build systems without program execution; and 2) the Clean-

room teams' products met system requirements more completely and succeeded on more

operational test cases than did those developed with a traditional approach. The results

suggest the feaslbility of complete off-line development, as In Cleanroom, and advance

the understanding of software development methodology.

Other replicated project studies Include (37, 5, 83].

4.3. Multi-Project Variation Studies

With a motivation to Improve the understanding of resource usage during software

development, (4] conducted a study whose purpose was to predict development cost by

using a particular model (i.e., object) and to evaluate it from the perspective of the pro-

ject manager, corporate managern and researcher. The particular model generation

method was examined In a multi-project scope, with baseline data from 18 large (2500 -

100,000 source line) software projects In the NASA S.E.L. production environment (from

the program domain), In which teams contained from two to ten programmers (from the

programmer domain) [10, 11, 38, 91]. The study design Incorporated multivarlate

1

methods to parameterize the model. Objective and subjective measurement of the pro-

jects was based on 21 criteria2 in three areas: methodology, complexity, and personnel

experience. Study preparation included preliminary work (521, execution included an es-

tablished set of data collection forms [101, and analysis used forward multIvariate regres-

sion methods. The major results (in the interpretation context of the study purpose) In-

cluded 1) the estimation of software development resource usage Improved by consider-

ing a set of both base-line and customization factors; 2) the application in the NASA

environment of the proposed model generation method, which considers both types of

factors, produced a resource usage estimate for a future project within one standard de-

viation of the actual; and 3) the confirmation of the NASA S.E.L. formula that the cost

per line of reusing code Is 20%o of that of developing new code. A major result (In the

interpretation context of the field of research) Is that the study highlights the difference

of each software development environment, which Influences the use of resource estima-

tion models. The particular programming environment and projects sampled qualify the

extrapolation of the results. The impact of the study Is an advancement in the under-

standing of estimating software development resource expenditure.

In order to asses, manage, and improve multi-project environments, [28, 28, 106,

13, 38, 18, 82, 109, 97, 1051 characterized, evaluated, and/or predicted the effect of

several factors from the perspective of the developer, modifier, project manager, and

corporate manager. All the studies examined moderate to large projects from produc-

2 Twenty-one factors were selected after examining a total of 82 factors that possi-

bly contributed to project resource expenditure, Including 38 from (1081 and 18 from
[281.

17

tion environments. The relationships Investigated were among various factors, Including

structured programming, personnel background, development process and product con-

straints, project complexity, human and computer resource consumption, error-prone

software Identification, error/change distributions, data coupIng/binding, project dura-

tion, staff size, degree of management control, and productivity. These studies have

provided Increased project visibility, greater understanding of classes of factors sensitive

to project performance, awareness of the need for project measurement, and efforts for

standardization of definitions. Analysis has begun on Incorporating project variation In-

formation Into a management tool [18, 231.

In order to Improve and better understand the software maintenance process, (1041

conducted an experiment to evaluate the relationship between the rate of maintenance

repair and various product and process metrics from the perspectIve of the developer,

user, and the project manager. A total of 447 small (up to 800 statements) commercial

and clerical Cobol programs from one Australian organization and two U.S. organiza-

tions were analyzed. The product and process metrics Included program complexity,

programming style, programmer quality, and number of system releases. The major

results were 1) in the Australian organization, program complexity and programming

style significantly affected the maintenance repair rate; and 2) In the U.S. organizations,

the number of times a system was released significantly affected the maintenance repair

rate.

In order to Improve the software maintenance process, (L] evaluated operational

faults from the perspective of the user, customer, project manager, and corporate

manager. The fault history for nine large production products (e.g., operating system

18

releases or their major components) was empirically modeled. He developed an ap-

proach for estimating whether and under what circumstances preventively fixing faults

In operational software In the field was appropriate. Preventively fixing faults consists

of installing fixes to faults that have yet to be discovered by particular users, but have

been discovered by the vendor or other users. The major result Is that for the typical

user, corrective service Is a reasonable way of dealing with most faults after the code has

been In use for a fairly long period of time, while preventively fixing high-rate faults Is

advantageous during the time immediately following release.

In order to assess the effectiveness of the testing process, (311 evaluated estimations

of the number of residual faults in a system from the perspective of the customer,

developer, and project manager. The study was based on fault data collected from

three large (2000 - 8000 module) systems developed In the Hughes-Fullerton environ-

ment. The study partitioned the faults based on severity and analyzed the differences in

estimates of remaining faults according to stage of testing. Insights were gained Into re-

lationships between fault detection rates and residual faults.

4.4. Single Project Studies

With a motivation to Improve software development methodology, [8] conducted a

study whose purpose was to charicterze the process (i.e., object) of Iterative enhance-

ment in conjunction with a top-down, stepwIse refinement development approach from

the perspective of the developer. The development process was examined In a single

project scope, where the authors. two experienced Individuals (from the programmer

domain), built a 17,000 line compiler (from the program domain). The study design In-

19

corporated descriptive methods to capture system evolution. Objective measurement of

the system was In several criteria areas: size, modularity, local/global data usage, and

data blnding/ coupling [82, 1021. Study preparation Included language design [9], execu-

tion incorporated static analysis of system snapshots, and analysis used descriptive

statistics. The results (In the interpretation context of the statistical framework) Includ-

ed 1) the percentage of global variables decreased over time while the percentage of ac-

tual vs. possible data couplings across modules Increased, suggesting the usage of global

data became more appropriate over tlime; and 2) the number of procedures and func-

tlions rose over time while the number of statements per procedure or function de-

creased, suggesting Increased modularity. The major result of the study (in the in-

terpretation context of the study purpose) was that the Iterative enhancement technique

encouraged the development of a software product that had several generally desirable

aspects of system structure. A major result (in the interpretation context of the field of

research) Is that the study demonstrates the feasibility of iterative enhancement. The

particular programming team and project examined qualify the extrapolation of the

results. The impact of the study is an advancement In the understanding of software

development approaches.

In order to Improve, better understand, and manage the software development pro-

cess, [a] evaluated the effect of applying chief programming teams and structured pro-

gramming In system development from the perspective of the user, developer, project

manager, and corporate manager. The large (83,000 line) system, known as "The New

York Times Project," and was developed by a team of professionals organized as a chief

programmer team, using structured code, top down design, walk-throughs, and program

20

libraries. Several benefits were Identified, Including reduced development time and cost,

reduced time In system integration, and reduced fault detection In acceptance testing

and field use. The results of the study demonstrated the feasibility of the chief pro-

grammer team concept and the accompanying methodologies In a production environ-

ment.

In order to improve their development environments through increased understand-

ing, [49, 14, 2, 81, 19] each conducted single project studies to characterize the errors

and changes made during a development project. They examined the development of a

moderate to large software project, done by a multi-person team, in a production en-

vironment. They analyzed the frequency and distribution of errors during development

and their relationship with several factors, IncludIng module size, software complexity,

developer experience, method of detection and Isolation, effort for Isolation and correc-

tion, phase of entrance into the system and observance, reuse of existing design and

code, and role of the requirements document. Such analyses have produced fault

categorization schemes and have been useful in understanding and improving a develop-

ment environment.

In order to Improve design methodology, [55, 27] examined a ground-support sys-

tem written in Ada3 to characterize the use of Ada packages from the perspective of the

developer. Four profemlo'nal programmers developed a project of 10,000 source lines of

code. Factors such as how package use affected the ease of system modification and

3 Ada is a trademark of the Department of Defense.

21

how to measure module change resistance were Identified, as well as how these observa-

tions related to aspects of the development and training. The major results were 1)

several measures of Ada programs were developed, and 2) there was a Indication that a

lot of training will be necessary If we are to expect the facilities of Ada to be properly

used.

In order to assess and Improve software testing methodology, [21, 88] characterized

and evaluated the relationship between system acceptance tests and operational usage

from the perspective of the developer, project manager, customer, and researcher. The

execution coverage of functionally generated acceptance test cases and a sample of

operational usage cases was monitored for a medium-size (10,000 line) software system

developed In a production environment. The results calculated that 84% of the pro-

gram statemerts were executed during system operation and that the acceptance test

cases corresponded reasonably well to the operational usage. The results give Insights

Into the relationships among structural coverage, fault detection, system testing, and

system usage.

5. Problem Areas in Experimentation

Tat following sections Identify several problem areas of experimentation In software

engineering, These areas may serve as guidelines In the performance of future studies.

After mentioning some overall observations, cautions In each of the areas of experiment

definition, planning, operation, and Interpretation are discussed.

22

5.1. Experimentation Overall

There appears to be no -universal model" or "silver bullet" In software engineering.

There are an enormous number of factors that differ across environments, In terms of

desired cost/quality goals, methodology, experience, problem domain, constraints, etc.

[108, 28, 4, 13, 28]. This results in every software development/maintenance/... environ-

ment being different. Another area of wide variation Is the many-to-one differential in

human performance [17, 45, 24]. The particular individuals examined In an empirical

study can make an enormous difference. Among other considerations, these variations

suggest that metrics need to be validated for a particular environment and a particular

person to show that they capture what is Intended [17, 18]. Thus, experimental studies

should consider the potentially vast differences among environments and people.

5.2. Experiment Definition

In the definition of the purpose for the experiment, the formulation of intuitive

problems into precisely stated goals is a nontrivial task [20, 221. Defining the purpose of

a study often requires the articulation of what is meant by "software quality." The

many interpretations and perceptions of quality (32, 39, 72] highlight the need for con-

sidering whose perspective of quality is being examined. Thus, a precise specification of

the problem to be investigated is 4 major step toward its solution.

5.3. Experiment Planning

Experimental planning should have a horizon beyond a first experiment. Con-

trolled studies may be used to focus on the effect of certain factors, while their results

may be confirmed in replications [p2, 98, 101, 110, 57, 58, 44, 43, 241 and/or larger case

23

studies (4, 151. When designing studies, consider that a combination of factors may be

effective as a "critical mass," even though the particular factors may be Ineffective when

treated In Isolation (15, 1051. Note that formal designs and the resulting statistical

robustness are desirable, but we should not be driven exclusively by the achievement of

statistical significance. Common sense must be maintained, which allows us, for exam-

ple, to experiment just to help develop hypotheses [19, 101. Thus, the experimental

planning process should Include a series of experiments for exploration, verification, and

application.

5.4. Experiment Operation

The collection of the required data constitutes the primary result of the study

operation phase. The data must be carefully defined, validated, and communicated to

ensure Its consistent Interpretation by all persons associated with the experiment: sub-

Jects under observation, experimenters, and literature audience [18]. There have been

papers In the literature that do not define their data well enough to enable a comparison

of results across many projects and environments. We have often contacted the experi-

menter to discover that we are measuring different things. Thus, the experimenter

should be cautious about the definition, validation, and communication of data, since

they play a fundamental role In the experimental process.

5.5. Experiment Interpretation

The appropriate presentation of results from experiments contributes to their

correct Interpretation. Experimental results need to be qualified by the particular sam-

ples (e.g., programmers, programs) analyzed (20). The extrapolation of results from a

24

particular sample must consider the representativeness of the sample to other environ-

ments [41, 111, 106, 80, 4, 28]. The visibility of the experimental results In professional

forums and the open literature provides valuable feedback and constructive criticism.

Thus, the presentation of experimental results should include appropriate qualification

and adequate exposure to support their proper Interpretation.

S. Conclusion

Experimentation In software engineering supports the advancement of the f'd

through an Iterative learning process. The experimental process has begun to be ap; -4

In a multiplicity of environments to study a variety of software technology area-. Fr

the studies presented, It Is clear that experimentation has p yen effective In providing

insights and furthering our domain of knowledge about the software process and pro-

duct. In fact, there Is a learning process In the experimentation approach Itself, as has

been shown In this paper.

We have described a framework for experimentation to provide a structure for

presenting previous studies. We also recommend the framework as a mechanism to fa-

cllltate the definition, planning, operation, and Interpretation of past and future studies.

The problem areas discussed are meant to provide some useful recommendations for the

applicatlo, of the experimental sprocess In software engineering. The experimental

framework cannot be used In a vacuum; the framework and the lessons learned comple-

ment one another and should be used In a synergistic fashion. This work contributes to

the understanding and advancement of experimentation In software engineering.

25

7. References

[I] E. N. Adams, Optimizing Preventive Service of Software Products, IBM Journal of Research and
Development 28, 1. pp. 2-14. Jan. 1984.

[21 J.-L. Albin and R. Ferreol. Collecte et analyse de mesures de logiciel (Collection and Analysis of
Software Data), Technique et Science Informatiquee 1, 4. pp. 297-313. 1982. (Rairo ISSN
0752-4072)

[3] A. Avtzienis. P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J. Traverse, K. S. Tso, and U. Voges.
The UCLA Dedix System: A Distributed Testbed for Multiple-Version Software, Digest Fi-
feenth Int. Sym. Fault-Tolerant Computing, Ann Arbor, M!, June 19-21. 1985.

[41 J. W. Bailey and V. R. Basill, A Meta-Model for Software Development Resource Expenditures,
Proc. Fifth int. Coni. Software Engr., San Diego, CA. pp. 107-116, 1Q81.

[5] J. W. Bailey, Teaching Ada: A Comparison of Two Approaches, Dept. Com. Sed., Univ. Maryland.
College Park. MD, working paper, 1984.

[6] F. T. Baker. System Quality Through Structured Programming, AFIPS Prot. 1972 Fall Joint
Computer Conf. 41, pp. 339-343, 1972.

[71 V. R. Basil and F. T. Baker. Tutorial of Structured Programming, Eleventh IEEE COMPCON.
IEEE Cat. No. 75CH1049-., 1975.

[8] V. R. Basill and A. J. Turner, Iterative enhancement: a practical technique for software develop-
ment, IEEE Tranesetions on Software Engineering SE-I. 4, Dec. 1Q75.

[9] V. R. Basill and A. J. Turner, SIMPL-T: A Structured Programming Language, Paladin House
Publishers. Geneva, IL, 1978.

[101 V. R. Basll. M. V. Zelkowitz, F. E. McGarry, R. W. Reiter, Jr.. W. F. Truszkowskl. and D. L.
Weiss, The Software Engineering Laboratory, Software Eng. Lab.. NASA/Goddard Space
Flight Center. Greenbelt. MD, Rep. SEL-77-001, May 1977.

[il V. R. Basi and M. V. Zelkowits, Analyzing Medium-Scale Software Developments, Proc. Third
Int. Con. Software Engr.. Atlanta, GA. pp. 116-123. May 1978.

[121 V. R. Basili. Tutorial on Model. and Metrie for Software Management and Engineering, IEEE
Computer Society, New York. 1980.

[13] V. R. BA-I and K. Freburger. Pogramming Measurement and Estimation in the Software En-
gineering Laboratory. Journal of Systems and Software 2, pp. 47-57, 1981.

[141 V. R. Ras" sad D. M. Weiss. Evaluation of a Software Requirements Document By Analysis of
Change Data. Proc. Fifth Int. Con. Software Engr., San Diego, CA. pp. 314-323. March 9-12,
1981.

[is] V. R. Basl and R. W. Reiter, A Controlled Experiment Quantitatively Comparing Software De-
velopment Approaches. IEEE Trans. Software Engr. SE-7. May 1981.

26

[321 T. P. Bowen, G. B. Wigle, and J. T. Tsai. Specification of Software Quality Attributes, Rome Air
Development Center, Grifflas Air Force Base. NY, Tech. Rep. RADC-TR-85-37 (three
volumes), Feb. 1Q85.

[331 G. E. P. Box, W. G. Hunter. and J. S. Hunter, Statistics for Experimenters, John Wiley & Sons,
New York, 1978.

[341 F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley Publishing Co., Reading, MA. 1975.

[35] R. E. Brooks, Studying Programmer Behavior: The Problem of Proper Methodology, Communica-
tions of the ACM 23, 4, pp. 207-213. 1980.

[36] W. D. Brooks, Software Technology Payoff: Some Statistical Evidence, J. Systems and Software 2,
pp. 3-9, 1981.

37] F. 0. Buck, Indicators of Quality Inspections, IBM Systems Products Division, Kingston. NY,
Tech. Rep 21.802, Sept. 1981.

[38] D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili, The Software Engineering La-
boratory, Software Eng. Lab., NASA/Goddard Space Flight Center, Greenbelt, ID Rep.
SEL-81-104, Feb. 1982.

[391 J. P. Cavano and J. A. McCall. A Framework for the Measurement of Software Quality. Proc.

Software Quaity and Assurance Workshop, San Diego, CA, pp. 133-139, Nov. 1978.

(401 W. G. Cochran and G. M. Cox, Experimental Designs, John Wiley & Sons, New York, 1950.

[41] W. G. Cochran, Sampling Techniques, John Wiley & Sons, Inc., 1953.

[42] P. A. Currit. M. Dyer, and H. D. Mills, Certifying the Reliability of Software. IBM Corp., Federal
Systems Division, 6600 Rockledge Dr., Bethesda, MD, 20817, Tech. Rep., March 1985. (sub-
mitted to the IEE Trans. Software Engineering)

[43] B. Curtis, S. B. Sheppard, P. Milliman. M. A. Borst, and T. Love, Measuring the Psychological
Complexity of Software Maintenance Tasks with the Halstead and McCabe Metrics, IEEE
Trans. Software Engr., pp. 96-104, March 1979.

[44] B. Curtis, S. B. Sheppard. and P. M. Ml111man, Third Time Charm: Stronger Replication of the
Ability of Software Complexity Metrics to Predict Programmer Performance, Proc. Fourth Int.
Conf. Software Enfr., pp. 356-360, Sept. 1979.

[45] B. Curtis, Cognitive Science of Programming. Sizth Minnowbrook Workshop on Software Perfor-
mance EvaJuation, Blue Mountain Lake, NY, July 19-22, 1983.

[46] M. Dyer and I. D. Mills, Develolng Electronic Systems with Certilflable Reliability, Proc. NA TO
Coa., Summer. 1962.

[47] M. Dyer, Cleacroom Software Development Method. IBM Federal Systems Division. Bethesda.
MD. October 14, 1962.

[48) T. Emerson, A Discriminant Metric for Module Cohesion. Proc-. Seventh Intl. Conf. Software
Engr., Orlando. FL, pp. 294-303, 1984.

28

[is] V. R. BSill and C. Doerflinger. Monitoring Software Development Through Dynamic Variables.
Proc. COMPSAC, Chicago, IL. 1Q83.

[171 V. R. Basill and D. H. Hutchens, An Empirical Study of a Syntactic Metric Family, Trans. Soft-
ware Engr. SE-9. 6, pp. 684-672. Nov. 1983.

[18) V. R. Bsll. R. W. Selby, Jr., and T. Y. Phillips, Metric Analysis and Data Validation Across
FORTRAN Projects. IEEE Trans. Software Engr. SE-9, a, pp. 652-663, Nov. 1983.

[19 V. R. Basill and B. T. Perricone, Software Errors and Complexity: An Empirical Investigation.
Communications of the ACM 27, 1, pp. 42-52, Jan. 1984.

[20 V. R. BMi and R. W. Selby, Jr., Data Collection and Analysis In Software Research and
Management, Proceedings of the American Statistical Association and Biometric Society Joint
Statistical Meetings, Philadelphia. PA. August 13-16. 1984.

[21] V. R. Basill and J. R. Ramsey, Structural Coverage of Functional Testing, Dept. Com. Set., Univ.
Maryland, College Park, Tech. Rep. TR-1442. Sept. 1984.

(221 V. R. Basil and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Data.,
Trans. Software Engr. SE-10, 6, pp. 728-738. Nov. 1984.

[23] V. R. Ba111 and C. L. Ramsey, Arrowsmith-P - A Prototype Expert System for Software En-
gineering Management, Dept. Com. Set.. Univ. Maryland. College Park, Tech. Rep., 1985.
(submitted to the Symposium on Expert Systems in Government, Mclean, VA. Oct. 1985)

[241 V. R. Bsil and R. W. Selby, Jr.. Comparing the Effectiveness of Software Testing Strategies,
Dept. Com. St., Univ. Maryland. College Park, Tech. Rep., 1985. (submitted to the IEEE
Trans. Software Engr.)

[26] V. R. Basil and R. W. Selby; Jr.. Four Applications of a Software Data Collection and Analysis
Methodology. Proc. NATO Advanced Study Institute: The Challenge of Advanced Computing
Technology to System Design Methods, Durham. U. K.. July 29 - August 10, 1985.

[28 V. R. Basil and R. W. Selby. Jr., Calculation and Use of an Environment's Cbaracteristic Soft-
ware Metric Set, Proc. Eighth Int. Con. Software Engr., London, August 28-30, 1985.

[27] V. R. Basil, E. E. Ktzs, N. M. Panillo-Yap. C. L. Ramsey, and S. Chang. A Quantitative Char-
acterization and Evaluation of a Software Development in Ada. IEEE Computer, September
1985.

[281 B. W. Boehm. Software Engineering Economics, Prentice-Hall, Englewood CUM, NJ, 1981.

[291 B. W. Boehm. T. E. Gray, and 'T. Seewaidt, Prototyping Versus Specifying: A Multiproject Ex-
periment, IEEE Trans. Software Enyr. SE-10. 3, pp. 290-303. May 1984.

[30 R. C. Bogdan and S. K. Biklen, Qualitative Research for Education: An Introduction to Theory
and Methods, Allyn and Bacon. Boston. MA. 1982.

[31] J. Bowen, Estimation of Residual Faults and Testing Effectiveness. Seventh Minnowbrook
Workshop on Software Performance Evaluation, Blue Mountain Lake. NY. July 24-27. 1984.

27

(671 J. Knight and N. Leveson, A Large Scale Experiment in N-Version Programming, Proc. of the
Ninth Annual Software Engineering Workshop, NrASA/GSFC. Greenbelt, MD, Nov. 1984.

[681 R. C. Linger, H. D. Mills, and B. 1. Wiltt. Structured Programming: Theory and Practice,
Addison-Wesley, Reading. MA, 1979.

[69] B. Littlewood and J. L. Verrall, A Bayesian Reliability Growth Model for Computer Software.
Applied Statietie 22, 3. 1973.

(701 B. Littlewood. Stochastic Reliability Growth: A Model for Fault Renovation Computer Programs
and Hardware Designs, IEEE Trans. Reliability R-30. 4, Oct. 1981.

[711 T. J. McCabe, A Complexity Measure, IEEE Trans. Software Engr. SE-2. 4. pp. 308-320, Dec.
1976.

[721 J. A. McCall. P. Richards. and G. Walters, Factors in Software Quality. Rome Air Development
Center, Grifliss Air Force Base. NY, Tech. Rep. RADC-TR-77-369. Nov. 1977.

[731 R. J. Mlara, J. A. Musselman, J. A. Navarro. and B. Shnelderman, Program Indentation and
Comprehensibility, Communications of the ACM 28, i, pp. 861-867, Nev. 1983.

[741 T. Moher and G. M. Schneider. Methodology and Experimental Research In Software Engineering,
International Journal of Man-Machine Studies 18. 1. pp. 85-87, 1982.

[75) S. A. Mulalk, The Foundation* of Factor Analyeis, M.Graw-HIU. New York. 1972.

[761 J. D. Musa. A Theory of Software Reliability and Its Application, IEEE Trans. Software Engr.
SE,-1 3. pp. 312-327, 1975.

[77 J. D. Musa. Software reliability measurement, Journal of Syatems and Software 1. 3. pp. 223-241.

1980.

[781 G. J. Myers, Compoite/Structured Design, Van Nostrand Reinhold. 1978.

[791 G. J. Myers. A Controlled Experiment In Program Testing and Code Walkthroughs/Inspections.
Communications of the ACM, pp. 760-760. Sept. 1978.

[80l J. Neter and W. Wasserman, Applied Linear Statietical Models, Richard D. Irwin. Inc.. Home-
wood, U., 1974.

[811 T. J. Ostrand and E. J. Weyuker, Collecting and Categorizing Software Error Data In an Indus-
trial Environment, Dept. Com. Sci., Courant Inst. Math. Sel., New York Univ.. NY. Tech.
Rep. 47, August 1902 (Revised May 1983).

821 D. J. Pansi. Experience with Automatic Program Testing, Proc. NBS Trend, and Applications.
Nat. Bureua Stds., Galthersburg. MD, pp. 25-28, May, 28 1981.

831 D. L. Pana. On the Criteria to be Used In Decomposing Systems Into Modules, Communications
of the ACM 15, 12, pp. 1053-1068, 1972.

[841 D. L. Parnas, Some Conclusions from an Experiment In Software Engineering Techniques. AF!PS
Proc. 1972 Fall Joint Computer Conf. 41, pp. 325-329. 1972.

30

[491 A. Endre. An Analysis of Errors and their Causes in Systems Programs. IEEE Trans. Software
Enfr., pp. 140-149, June 1975.

501 A. R. Feuer and E. B. Fowlkes. Some Results from an Empirical Study of Computer Software,
Proc. Fourth Int. Conf. Software Engr.. pp. 351-355, 1979.

[511 R. W. Floyd, Assigning Meaning to Programs, Am. Math. Soc. 19, ed. J. T. Schwartz: Provi-
dence, RI, 1967.

L521 K. Freburger and V. R. Basill, The Software Engineering Laboratory: Relationship Equations,
Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep. TR-764, May 1979.

L531 J. D. Gannon and J. J. Horning, The Impact of Language Design on the Production of Reliable
Software. Trans. Software Engr. SE-i, pp. 179-191. 1975.

[54 J. D. Gannon, An Experimental Evaluation of Data Type Conventions, Communications of the
ACM 20. 8. pp. 584-595, 1977.

[551 J. D. Gannon. E. E. Katz, and V. R. Basill. Characterizing Ada Programs: Packages. The Mea8-
urement of Computer Software Performance, Los Alamos National Laboratory, Aug. 1083.

58j A. L. Goel, Software Reliablity and Ec?!mation Techniques, Rome Air Development Center.
Griflss Air Force Base, NY, Rep. RADC-TR-82-263, October 1982.

[57) J. D. Gould and P. Drongowski. An Exploratory Study of Computer Program Debugging, Human
Factors 16, 3, pp. 258-277, 1974.

[581 J. D. Gould, Some Psychological Evidence on How People Debug Computer Programs. Interna-
tional Journal of Man-Machine Studies 7. pp. 151-182, 1975.

'5o M. H. Halstead, Elemento of Software Science, North Holland, New York, 1977.

160! W. C. Hetsel. An Expermental Analysis of Program Verification Methods. Ph.D. Thesis. Univ. of
North Carolina, Chapel Hill. 1976.

r61 C. A. R. Hoare, An Axiomatic Basis for Computer Programming, Communications of the ACM
12, 10, pp. 578-583. Oct. 1969.

'621 D. H. Hutchens and V. R. Baal, System Structure Analysis: Clustering With Data Bindings,
IEEE Trans. Soft. EnSr. SE-Il, 8. Aug. 1985.

-83) S-S. V. Hwang, An Empirical Study in Functional Testing, Structural Testing, and Code
Reading/Inspectione, Dept. Com. Sdt., Univ. of Maryland. College Park. Scholarly Paper 362.
Dec. 1981.

'64) Z. Jelinald and P. B. Moranda. Applications of a Probability-Based Model to a Code Reading Ex-

pertient, Proc. IEEE Symposium on Computer Software Reliability, New York, pp. 78-81.
IEE , 1073.

'65 W. L. Johnson, S. Draper, and E. Soloway. An Effective Bug Classification Scheme Must Take the
Programmer into Account. Proc. Workshop High-Level Debulgint, Palo Alto, CA. 1083.

:66 J. P. J. Kelly, Specification of Fault-Tolerant Multi-Version Software: Experimental Studies of a
Design Diversity Approach. UCLA Ph.D. Thesis, 1982.

29

[102 W. P. Stevens, G. J. Myers. and L. L. Constantine, Structural Design. IBM Systems Journal 13.
2. pp. 115-139, 1974.

[1031 L. G. Stucki. New Directions in Automated Tools for Improving Software Quality, in Current
Trends in Programming Methodology, ed. R. T. Yeh, Prentice Hall, Englewood Cliffs. NJ,
1977.

[1041 I. Vessey and R. Weber, Some Factors Affecting Program Repair Maintenance: An Empirical
Study. Communications of the ACM 28, 2, pp. 128-134, Feb. 1983.

11051 J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H., Malec, S. Hoben. and Y. Liu, Productivity
Factors and Programming Environments, Proc. Seventh Int. Conf. Software Engr., Orlando.
FL, pp. 143-152, 1984.

[1061 C. E. Waston and C. P. Felix, A Method of Programming Measurement and Estimation, IBM
Systems J. 18, 1, pp. 54-73, 1977.

[1071 G. Weinberg, The Paychology of Computer Programming, Van Nostrand Rheinhold Co., 1971.

[108) M. Welser, Programmers Use Slices When Debugging, Communications ACV 25, pp. 446-452,
July 1982.

(10] D. M. Weiss and V. R. Basil, Evaluating Software Development by Analysis of Changes: Some
Data from the Software Engineering Laboratory, IEEE Trans. Software Engr. SE-li, 2. pp.
157-168, February 1985.

[1101 L. Weismana, Psychological Complexity of Computer Programs: An Experimental Methodology,
SIGPLAN Notice. 9. 6, pp. 25 - 36, June 1974.

[111 R. Wolverton, The Cost of Developing Large Scale Software. IEEE Trans. Computer. 23. 6. 1974.

[1121 S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, The Effect of Modularization and Comments
on Program Comprehension, Dept. Com. Set., Arizona St. Univ., Tempe, AZ, working paper,
1981.

[1131 J. C. Zolnowski and D. B. Simmons, Taking the Measure of Program Complexity, Proc. National
Computer Conference, pp. 329-336, 1981.

32

[851 D. L. Parnas, A Technique for Module Specification With Examples. Communications of the ACM
15, May 1972.

[861 L. Putnam. A General Empirical Solution to the Macro Software Sizing and Estimating Problem,
IEEE Trans. Software Engr. 4, 4, 1978.

[871 H.R. Ramsey. M.E. Atwood. and J.R. Van Doren, Flowcharts Versus Program Design Languages:
An Experimental Comparison, Communications ACM 26, 6, pp. 445-449, June 1983.

[881 J. Ramsey. Structural Coverage of Functional Testing. Seventh Minnowbrook Workshop on Soft.
ware Performance Evaluation, Blue Mountain Lake, NY, July 24-27. 1984.

[891 Statistical Analysis System (SAS) User's Guide. SAS Institute Inc.. Box 8000, Cary, NC, 27511.
1982.

[90 H. Scheffe, The Analysis of Variance, John Wiley & Sons, New York, 1959.

Loll Annotated Bibliography of Software Engineering Laboratory (SEL) Literature, Software Eng.
Lab,, NASA/Goddard Space Flight Center. Greenbelt, MD Rep. SEL-82-006, Nov. 1982.

[921 R. W. Selby, Jr., An Empirical Study Comparing Software Testing Techniques. Sixth Min.
nowbrook Workshop on Software Performance Evaluation, Blue Mountain Lake, NY. July 19-
22, 1983.

[931 R. W. Selby, Jr., Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics,
Dept. Com. Sct., Univ. Maryland, College Park, Ph. D. Dissertation, 1985.

194J R. W. Selby. Jr., V. R. Basili, and F. T. Baker, CLEANROOM Software Development: An Empir-
ical Evaluation, Dept. Com. Sct.. Univ. Maryland, College Park, Tech. Rep. TR-1415. Febru-
ary 1985. (submitted to the IEEE Trans. Software Engr.)

[951 J. G. Shanthikumar, A Statistical Time Dependent Error Occurrence Rate Software Reliability
Model with Imperfect Debugging, Proc. 1981 National Computer Conference. June 1981.

[981 B. A. Shell, The Psychological Study of Programming, Computing Survey# 13, pp. 101-120, March
1981.

L971 V.Y. Shen, T.J. Yu, SM. Thebant, and L.R. Paulsen, Identifying Error-Prone Software - An Em-
pirical Study, IEEE Trans. Soft. Engr. SE-,I, 4. pp. 317-324, April 1985.

[98] B. Shneiderman. R. E. Mayer, D. McKay, and P. Heller. Experimental Investigations of the UtUil-
ty of Detailed Flowcharts In Programming, Communications of the ACU 20, 6. pp. 373-381,
1977.

[99 S. Siegel Norparsmetne Statistics for the Behavioral Science., McGraw-Hill, New York. 1955.

[1001 E. Soloway, K. Elbuich, J. Bonsr, and J. Greenspan, What Do Novices Know About Program-
ming?, in Direction, in Human-Computer Interactions, ed. A. Badre and B. Shneiderman,
Ablex, Inc., 1982.

[1011 E. Soloway and K. Ehrlich, Empirical Studies of Programming Knowledge. Trans. Software Engr.
SE-jO, 5. pp. 59s-69, Sept. 1984.

31

Ficure 2. Study delinition example.
Definition element example

Motivation To Improve the unit tesing proces.
Purpose characterize and evaluate
Object the processes of functional and structural testing
Perspective from the perspective of the developer
Domain: programmer as they are applied by experienced programmers
Domain: program to unit-size software
Scope in a blocked subJect-project study.

FISure 3. ExerM enWi scoOes.

#Teams per #Projects
project

one more than one

one Single project Multi-project
variation

more than Replicated Blocked
one project subject-project

F11Mre 1. SummM of the framework ot e erimentation.
. Definition

Motivation Object Purpose Perspective Domain Scope
Understand Product Characterize Developer Programmer Single project
Assess Process Evaluate Modifier Program/project Multi-project
Manage Model Predict Maintainer Replicated project
Engineer Metric Motivate Project manager Blocked subject-project
Learn Theory Corporate manager
Improve Customer
Validate User
,A,ure Researcher

H. Planning_
Design Criteria Measurement

Experimental designs Direct reflections of cost/quality Metric definition
Incomplete block Cost Goal-question-metric
Completely randomized Errors Factor-criteria- metric
Randomized block Changes Metric validation
Fractional factorial Reliability Data collection

Multivariate analysis Correctness Automatability
Correlation Indirect reflectlons of cost/quality Form design and test
Factor analysis Data coupling Objective vs. subjective
Regression Information visibility Level of measurement

Statistical models Programmer comprehension Nomlnai/classiflcatory
Non-parametric Execution coverage Ordinal/ranking
Sampling Size Interval

ComplexIt , Ratio
Ell. Operation

Preparation Execution Analysis

Pilot study Data collection Quantitative vs. qualitative
Data validation Preliminary data analysis

Plots and histogram
Model assumptions

Primary data analysis
Model anolication

M. Interpretation _

Interpretation context Extrapolation Impact
Statistical framework Sample representativeness Vliblity
Study purpose Replication
Field of research Application

)

